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introducing the 0.1 eV levels into ZnSe in comparable 
concentrations. 

The ZnSe crystals were doped with Al to produce high 
w-type conductivity samples. Undoped crystals often 
show high resistivity after heat treatment or irradiation 
which makes it difficult to perform electrical measure­
ments at low temperatures. 

The correlation between irradiation and thermal 
treatments has also been observed in CdS and CdTe. 
For example, comparable electron irradiation of an 
unfired CdTe sample (characterized by curve A of 
Fig. 1, Ref. 1) produces a crystal showing the same 
characteristic behavior as a sample fired for 30 min at 
900°C in saturated Cd vapor (curve B of Fig. 1, Ref. 1). 
CdS crystals appear to require much larger irradiation 
dosages to produce the double acceptor center in similar 
concentrations. 

The defect described in Ref. 1 and this letter appears 
to be the dominant electrically active defect produced 

I. INTRODUCTION 

SINCE the late 1940's, great strides have been taken 
in the discovery and experimental observations of 

antiferromagnetic compounds. In the last few years 
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H e in the w-type II-VI compounds by short metal vapor 
firing or by electron damage. If other defects are pro-

igh duced, they are either unstable at room temperature or 
ten are not electrically active in ^-type material. The 
ion observation of the described double acceptor center in 
ire- CdS, CdTe, and ZnSe suggests the general nature of 

this defect in the II-VI family of compounds. 
n a l I t has been suggested that a defect of the type re-
Xe. ported here may be responsible for part of the edge 

a n emission spectra seen in II-VI compounds.3 However, 
of a relationship between the emission intensity of the 

m e optically observed center and the defect concentrations 
L at obtained from electrical transport measurements has 
1)# not yet been established. 
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the compounds XMnF3 , where X represents Na, K, 
e n and Rb, have been of considerable interest. Like many 
0£ other double fluorides, these compounds exist in 
Lrs the perovskite-type structure.1,2 Extensive crystallo-

graphic3-5 and magnetic6-16 investigations have been 
1 R. L. Martin, R. S. Nyholm, and N. C. Stephenson, Chem. 

Ind. (London) 1956, 83 (1956). 
2 Yu, P. Simanov, L. R. Batsanova, and L. M. Kovba, Zh. 
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The magnetic properties of the hexagonal antiferromagnet CsMnF3 have been investigated by magnetic 
susceptibility, torsion, electron resonance, and nuclear-antiferromagnetic double resonance. Torsion meas­
urements establish a transition to an antiferromagnetically ordered state at 53.5°K. A weak sixfold anisotropy 
in the transverse plane and a large axial anisotropy along the c axis corresponding, respectively, to the fields 
36Kz/M = l.l Oe and Ki/M = — 7500 Oe are detected. Susceptibility measurements at 4.2°K establish an 
exchange field HE = 3.5X 10s Oe. The temperature dependence of K6 was observed from 4.2°K to the transi­
tion temperature and compared with spin-wave and molecular field theory. From paramagnetic resonance 
measurements an isotropic g value of 1.9989±0.003 is determined. Magnetic resonance measurements below 
the transition temperature with the applied field in the transverse plane show a weak sixfold anisotropy 
consistent with the torsion measurements. Measurements out of the transverse plane confirm the large 
axial anisotropy. In the temperature range from 0.3 to 4.2°K there is an additional temperature dependent 
anisotropy field HA,T = 9.15/T Oe directed along the sublattices. This field arises from the hyperfine interac­
tion with the Mn65 nuclear magnetization. Assuming parallel ordering within the transverse planes with 
adjacent planes alternately magnetized, a calculation of the classical dipolar interactions and of the ligand 
field anisotropy arising from the displacement of the nearest neighbor fluorines gives a combined axial 
anisotropy field Ki/M=— 7965 Oe. The in-plane anisotropy due to second-order dipolar interactions is 
estimated to be « 2 Oe in reasonable agreement with observation. The strong coupling between the nuclei 
and electrons affords an opportunity to observe the Mn55 nuclear resonance indirectly by monitoring the 
position of the electron resonance field. A saturation of the nuclear magnetization is observed at 668 Mc/sec 
which is (3±1)% smaller than the calculated average hyperfine field of 689±7 Mc/sec. This indicates the 
presence of a zero-point reduction in the electron spin. 
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carried out on KMnF3. This compound is paramagnetic 
at room temperatures and it becomes a uniaxial anti-
ferromagnet below its Neel Temperature of 88.3°K. 
However, below 81.5°K the magnetic behavior becomes 
quite complex; the static magnetic measurements indi­
cated a highly nonlinear magnetic susceptibility.6'9 

This second transition is attributed to an orthorhombic 
distortion, which causes a canting of the sublattice 
magnetizations. A weak ferromagnetic moment arising 
from this canting is therefore responsible for the 
relatively complex behavior. 

The magnetic properties of RbMnF3 have also been 
studied.17-20 In contrast to the complex low-temperature 
behavior of KMnF3, this compound is a simple cubic 
antiferromagnet below its Neel point of 82°K. The 
remarkable feature of this compound is that even at 
low temperatures its crystal structure remains cubic 
perovskite. 

CsMnF3, in contrast to the above compounds, has 
the same structure as the hexagonal form of 
BaTi03.

2'21'23 The dimensions of the hexagonal unit 
cell are a=6.213±0.003 A and c= 15.074zb0.004 A with 
c/a— 2.426. With six formula units per cell, the calcu­
lated density is 4.84 g/cm3. The space group is P6z/mmc. 
The atomic coordinates and all the interatomic dis­
tances are given in a paper by Zalkin, Lee, and 
Templeton.21 A sketch of half of the unit cell is given 
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c = 15.074 A 

FIG. 1. Sketch of half of the unit cell that shows the two 
different manganese sites. 

in Fig. 1. The structure is built up of six closed-packed 
layers of Cs and F ions with the Mn ions located in the 
fluorine octahedral holes between the layers. The Csi 
atoms have 12 fluorine neighbors arranged as in 
hexagonal close packing; the point symmetry at these 
sites is 6m2(Dzh)> The Cs2 atoms also have 12 fluorine 
neighbors, but are arranged as in cubic close packing; 
the point symmetry at these sites is 2>rn(Czv). 

The interesting feature of this structure is that there 
are two manganese sites. One third of the manganese 
atoms, designated Mni, occupy the centers of fluorine 
octahedra that share their corners with other octahedra, 
as in the perovskite structure. The remaining two 
thirds of the manganese atoms, designated Mn2, are 
in distorted fluorine octahedra that share one face and 
three corners with other octahedra. Whereas the point 
symmetry of the Mni sites is 3m(Du), the point 
symmetry about the Mn2 sites is 3m{Czv). The Mn2 
atoms are distorted out of their closed packed positions 
to a distance 3.004 A apart. The distortion of the 
structure does not affect greatly the various Mn-F 
distances, but the various F-F distances range from 
2.69 to 3.52 A. 

Consequently, interest arose in the magnetic proper­
ties of this compound and the possible effects of the 
hexagonal structure on its magnetism. A brief account 
of its magnetic properties was presented earlier.24 The 
purpose of this paper is to present a more detailed 
analysis of the experimental and theoretical magnetic 
properties. We will first discuss the results of magnetic-
susceptibility measurements. Then the results from 
torsion measurements will be presented. These results 
obtained at 4.2°K establish that the crystal is ordered 
antiferromagnetically with a large negative axial 
anisotropy. Low-field and high-field expressions for 
the torque will be derived. A discussion of the contri-

24 K. Lee and A. M. Portis, Bull. Am. Phys. Soc. 7, 612 (1962). 
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butions to the anisotropy is included. We will show 
that the axial anisotropy is due to magnetic dipolar 
interactions and ligand fields. Finally, we will discuss 
the dynamical magnetic properties investigated 
by electron resonance and nuclear-antiferromagnetic 
double resonance. The macroscopic equations of motion, 
for both the electrons and the nuclei, will be derived. 

II. SUSCEPTIBILITY MEASUREMENTS 

Experimental Resul ts 

The magnetic susceptibility of CsMnF3 was measured 
at 298, 77 and 4.2°K using a static force method, the 
Curie method.25-26 A small single crystal was placed in 
a nonhomogeneous magnetic field and the force was 
measured with a Faraday balance. The sample is 
mounted in a cylindrically shaped Teflon cradle which 
in turn is connected via a 1.5-mm o.d. quartz tube to 
a 0.002-in. beryllium-copper wire. This wire is then 
attached to one arm of the balance. The Teflon cradle 
has a removable cap on which the sample is mounted. 
The apparatus was calibrated with a MnF 2 single 
crystal. 

From torsion measurements (next section) a tran­
sition to an ordered state was observed at 53.5°K. The 
susceptibility measurements at 4.2°K were, therefore, 
made parallel and perpendicular to the symmetry axis, 
the c axis. The values of the susceptibilities at the 
different temperatures are x(298oK) = 10.6X10~3 emu/ 
mole, X(77°K) = 27.9X10-3 emu/mole, and x(4.2°K) 
= 39.7X10~3 emu/mole, where x(4.2°K) represents the 
average susceptibility determined with the field parallel 
and perpendicular to the c axis. The 4.2°K results were 
obtained for fields of 3.8 to 5.3 kOe. The values obtained 
in the paramagnetic region are consistent with the 
values obtained by Teaney.27 

3X1CT6 

Magnetic susceptibility of CsMnF3 

L at4.2°K 

FIG. 2. Force di­
vided by magnetic 
field versus magnetic 
field at 4.2°K. The 
force is in gram 
units. 

25 T. R. McGuire, in Solid State Physics, edited by K. Lark-
Horovitz and V. A. Johnson (Academic Press Inc., New York, 
1959), Vol. 6, p. 171. T. R. McGuire and C. T. Lane, Rev. Sci. 
Instr. 20, 489 (1949). 

26 G. K. White, Experimental Techniques in Low Temperature 
Physics (Oxford University Press, New York, 1959), 

27 D. T. Teaney (private communication). 

A graph of f/H as a function of H in the ordered 
state is shown in Fig. 2. All the data, within experi­
mental error, lie on a straight line and extrapolate to 
zero. Below 1 kOe, the slope of the data taken per­
pendicular to the c axis is approximately J of the slope 
for larger applied fields; it is also approximately J of 
the slope of the data taken parallel to the c axis. 

No hysteresis was observed parallel to the c axis. 
Hysteresis perpendicular to the c axis was not ob­
servable because of the free rotational suspension of 
the sample. 

— I 1 1 

Magnetic torsion, CsMnR 
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FIG. 3. Low field magnetic torsion measurements in the {0001} 
plane at 4.2°K. The theoretical curves are given by the low-field 
expression for the torque. Note the emergence of sixfold symmetry 
with increasing field. 

Interpretation of Results 

Since we did not observe any hysteresis or a nonzero 
extrapolation in the f/H versus H graph, we conclude 
that this compound is neither a ferromagnet nor a 
canted antiferromagnet with a weak ferromagnetic mo-
ment parallel to the c axis. All the measurements indi­
cate an antiferromagnetic ordering. 

The fact that the slope of the f/H versus H graph, 
for H in the transverse plane, is approximately i of the 
final slope, indicates the sublattice magnetizations lie 
parallel to the plane. This factor of J arises from the 
absence of a contribution of the parallel susceptibility 
to the total susceptibility. If the magnetizations are 
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parallel to the plane, it is not unreasonable to assume 
that since there is sixfold symmetry in the plane, there 
will be domains of magnetization along three equivalent 
easy directions in the plane. As long as the applied field 
is below the critical field for flopping (£TC~108 Oe) the 
total measured susceptibility would include a parallel 
contribution according to the relation 

(x)av=Jxi+ixn> 

where x i and xn are, respectively, the susceptibilities 
perpendicular and parallel to the magnetizations. At 
4.2°K, xn is nearly zero so that the average suscepti-
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FIG. 4. Intermediate- and high-field magnetic torsion measure­
ments in the {0001} plane at 4.2°K. For fields up to 5 kOe, dis­
continuities occur along the (12.0) directions and for fields greater 
than or equal to 6 kOe, a pure sixfold dependence is observed. 
Note the torque at high fields is independent of the field. 

bility is smaller than the perpendicular susceptibility 
by a factor of \. 

For fields much larger than Hc, the susceptibility is 
observed to be larger in the transverse plane. This is 
also an indication that the magnetizations lie in the 
plane. 

III. TORSION MEASUREMENTS 

Experimental Results 

The anisotropy of a single crystal of CsMnF3 was 
investigated by torsion measurements in a uniform field 
from 4.2 to 77°K. The apparatus is quite similar to that 
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FIG. 5. Field dependence of magnetic torsion in the {0001} 
plane at 4.2°K. This is a plot of the torque divided by the field 
versus the field. At low fields, the torque is proportional to H2. 

used by Stout and Griflel28 and Heeger.9 The crystal is 
mounted to the same Teflon cradle and quartz rod used 
in the susceptibility measurements and the beryllium-
copper wire is attached to a rotating torsion head. A mir­
ror, attached to the rod, determines the orientation of the 
sample with respect to a zero-field position. The torque 
is then determined by rotating the torsion head back 
to this position. To measure the torque as a function 
of temperature, a heater was wound around the copper 
can containing the freely suspended sample. A copper-
constantan thermocouple, with a reference temperature 
of 77°K, was used to measure the temperature. Except 
for the measurements of the torque as a function of 
temperature, all the measurements were carried out at 
4.2°K. The sample weighed 20.5 mg. 

Low-field torsion measurements in the transverse 
plane are shown in Fig. 3. The theoretical curves are 
also shown. At very low fields a sin2<p dependence 
predominates. With slightly greater field, a sin4<p de­
pendence is observed, and finally a sixfold dependence 
emerges for greater applied fields. 

For intermediate and high fields, the angular de­
pendence of the torque is shown in Fig. 4. For applied 
fields up to 5 kOe, discontinuities were observed along 
the (12.0) directions, suggesting that the sublattice 
magnetizations are along these directions in zero field. 
For fields greater than or equal to 6 kOe, the discon­
tinuities vanish, giving rise to a pure sixfold dependence. 
This indicates that the magnetizations are being freely 
pulled around by the applied field. Zero torque is 
always observed when the field is along the (12.0) and 
(10.0) directions. These two plots indicate the (12.0) 
directions correspond to minimum energy orientations 
and the (10.0) directions correspond to maximum energy 
orientations. 

The field dependence of the torque in the transverse 
or {0001} plane is shown in Fig. 5. This is a plot of the 
torque divided by the field versus the field applied 
along the two principal directions in the plane. The 
torque divided by field is just the net moment perpen­
dicular to the applied field. For fields up to 600 Oe, the 

28 J. W. Stout and M. Griflel, J. Chem. Phys. 18, 1449 (1950). 
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FIG. 6. Magnetic torsion in the {21.0} plane at 4.2°K. The torque 
is zero with the field along the (00.1) and (12.0) directions. 

torque along the two directions is proportional to H2' 
This indicates the absence of a weak ferromagnetic 
moment in the plane. Upon attaining a maximum at 
approximately 900 Oe, the torque decreases to a 
constant value above 9 kOe. Coupled with the obser­
vations of sixfold symmetry for fields greater than or 
equal to 900 Oe, a critical field Hc of about 900 Oe is 
indicated. No hysteresis was observed with the field 
parallel or perpendicular to the transverse plane. 

The angular dependence of the torque was also 
observed in the {21.0} plane. This is shown in Fig. 6 
for fields up to 7 kOe. The torque is zero with the field 
along the (00.1) and (12.0) directions. The torque for 
applied fields of 500 and 7 kOe have a period of 180°. 
The torque at the intermediate field, 1 kOe, has in 
addition a small sin40 dependence. These measurements 
reveal the presence of a large negative axial anisotropy. 
The transverse plane is, therefore, an 'easy' plane. 
The torque has twofold symmetry in this plane because 
of the uniaxial symmetry of the c axis. The presence 
of the small fourfold dependence for an applied field 
of 1 kOe is due to the flopping of the magnetizations 
in the plane. 

Finally, the temperature dependence of the torque 
parallel and perpendicular to the transverse plane with 
fields from 800 Oe to 7kOe was observed. No torque 
was observed above 53.5°K. Since the torque in the 
transverse plane at high fields has sixfold symmetry, 
one would expect the torque to be directly proportional 
to the sixfold anisotropy energy, i£3. And in fact, it 
will be shown in the next section that for fields much 
greater than the critical field for flopping, the torque 

r = — 12Kz sin6<p, o> 

where <po is the position of the applied field H0 with 
respect to a (12.0) direction. Figure 7 shows the tem­
perature dependence of the torque, i.e., the sixfold 
anisotropy energy. A field of 6 kOe was applied along 
a direction 45° with respect to a (12.0) direction. 

From these torsions measurements, we have found 
(1) no evidence of either a weak ferromagnetic moment 
in the transverse plane or a screw structure, (2) a weak 
sixfold anisotropy in the plane, (3) an antiferromag-
netic ordering with a large negative axial anisotropy, 
(4) a critical field of 900 Oe, (5) the (12.0) and (10.0) 
correspond, respectively, to the easy and hard di­
rections, and (6) a transition at 53.5°K to the dis­
ordered state. These measurements are consistent with 
the susceptibility measurements. 

At low fields, the magnetic moments may be in six 
equivalent directions in the transverse plane. If all six 
equivalent domains were equally present, there should 
be sixfold symmetry in the torque at all fields. However, 
because there are deviations, we conclude that there 
exists at low fields inequivalent population of spins 
along the six directions. 

Theory of Torsion and Anisotropy 

In this section we derive low- and high-field ex­
pressions for the torque. We then discuss the tempera­
ture dependence of sixfold anisotropy energy. Finally, 
we calculate the magnetic dipolar and ligand field 
contributions to the anisotropy. We will show that the 
ligand fields due to the distortion of the fluorine 
octahedra and the classical magnetic dipolar inter­
actions give rise to a large negative axial anisotropy 
consistent with experimental observations. Although 
no specific calculations are carried out for the sixfold 
anisotropy, we will show it not to be unlikely that this 
anisotropy arises from second-order dipolar interactions. 

In deriving the theoretical expressions for the torque 
(and in a later section the expressions for the electron 
and nuclear resonance) we assume a two sublattice 

o 2 
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FIG. 7. Tempera­
ture dependence of 
the sixfold anisot­
ropy energy. A field 
of 6 kOe is applied at 
45° with respect to a 
(12.0) direction. A 
Neel temperature of 
53.5°K is observed. 
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model consistent with experimental observations. That 
is, we assume the magnetizations to lie in the transverse 
plane along the (12.0) directions with a negative axial 
anisotropy energy Kx cos20. The sixfold anisotropy 
energy in the plane is given by K% sin60 cos6<p.29 With 
the angles defined in Fig. 8, we have for the total energy 

U= - (M 1 +M 2 ) -H 0 +XM 1 -M 2 

—i£3(sin60i cos6<pi+sin602 cos6<p2) 
+Ki(cos 20 1+cos 20 2 ) , (1) 

where K i > 0 and Z 3 > 0 . 

Low-Field Theory 

We proceed to derive an expression for the torque 
in the transverse plane for low fields. By low fields, we 
mean fields smaller than the critical field Hc. We 
assume unequal spin populations along the six equiva­
lent directions in the transverse plane. We let 0o=0i 
= 02=|7r. We initially concern ourselves with one of the 
six equivalent directions. The energy is 

U= — Z"3(cos6^i+cos6^2)— AM2 cos(<pi+<£>2) 

+MH0[cos(<po+<p2) — cos(<po— (ft)"]. (2) 

The torque is then given by 

T=MH0\j>m((p0- <p1)-sin((po+ cp2)']. (3) 

Now we introduce the new parameters <3> and A: 

$ = J O i - <£>2+TT), 

A=i(*i+*>2) , (4) 

where A is small. The sublattice magnetizations are 
induced by the applied field to cant slightly away from 
the easy directions. The amount of canting is given by 
A and the position of the net moment due to the canting 
is given by $ . Rewriting the energy and torque ex­
pressions in terms of the new parameters, we have 

Z7=-2 i£ 3 ( l -18A 2 ) cos6$-XM 2 ( l -2A 2 ) 
- 2 M # o A c o s ( > o - $ ) , (5) 

T=(#o2 /2A)sin2(<?0-$) . 

The equilibrium position is then given by 

(6) 

#0 cos(<p0—$) Ho cos(<p0—$) 
A= « , (7) 

2HB+HA.S COS6$ 2HE 

where HE=^M and HA,ZZ=36KZ/M. We assume 
HE5>HA,%, which is quite valid from experimental 
observations. Substituting Eq. (7) into Eq. (5) gives 
an expression of the energy as a function of <po and <£. 
Now we solve for <£ in terms of <po by taking dU/d$ = 0 
and expanding in powers of the applied field to order 

29 H. S. Belson and C. J. Kriessman, Suppl. J. Appl. Phys. 30, 
175 (1959). J. Smit and H. P. J. Wijn, Ferrites (John Wiley & 
Sons, Inc., New York, 1959). 

FIG. 8. Definition of 
the angles used. The z 
axis coincides with the 
(00.1) direction. The x 
and y axes are parallel, 
respectively, to the 
(12.0) and (10.0) di­
rections. 

Ho*. We find 

sw2&^-(H<?/12Kjk)sm2<po 
- (Ho2/72Kz\y sin2 <pQ cos2 <p0. (8) 

Substituting into Eq. (6) we have 

T = (Fo2/2X){Cl-|(£ro2/72^3X)2] sin2^0 

+ i ( W / 7 2 ^ 3 X ) s i n 4 ^ 0 

+%(Ho2/72Kzkysm6<po}. (9) 

Now we take into account that there are six equivalent 
directions with unequal spin populations. Let ao, #i, 
and #2 represent the fraction of the total spins along 
the six directions such that 

*o(+, -)+*i(+, -)+a2(+, - ) = 1. (10) 

Because the parameter is given by &=$(HQ) we assume 
a small change in <£ due to the angular variation of the 
small applied field Ho. Since 

$H-o=0, i r /3 ,2ir /3 , . . . , (11) 

which follows from the definition of <£, we have 

<f>=(mr/3)+8, » = 0 , 1,2. (12) 

To lowest order in H0, i.e., Ho<£Hc, &M) and 

r= (H0
2/2\) sm2(<p0-mr/3) 

is the torque due only to the spins along the nth. direc­
tion. Therefore, to 0(HoQ), the total torque due to the 
spins along the six directions is 

n=0 2X -V—1*1-sin2(<£>0—nir/3) 

1 / H<? \ 
+ - ( I sin4(<^o—nT/3) 

2\72KskJ 

+-~ 8\72Ko\ 
sin6((po—nw/3) \ . (13) 

Carrying out the sum and defining a phase factor f 
given by 

t a n 2 f = | v 3 (a0 - a2)/ ( i (a0+ a2) - ai) (14) 
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and a constant 

D = (2 (#0+ 02) ~ 0i)/cos2 <p0 

we have finally, 

r = (Fo2/2X)Cl-i(^o2/72^3X)2]Z> s i n 2 ( ^ 0 - r ) 

(15) 

+ 18iT3i JDsin4Uo+-J 
72KZ\ 

27 / 
# 3 

2 V 72ZW 
sin6^o. (16) 

We note that to lowest order in Ho, T~HO2. Also if the 
spin populations are equal D and f vanish, leaving 
only a sixfold dependence of the torque, which is as 
expected. Our assumption that the (12.0) directions 
correspond to the easy directions in the plane is con­
sistent with experimental observations. 

High-Field Theory 

We derive expressions for the torque with H0 in the 
{21.0} plane and in the transverse plane. We assume 
HQ^>HC and H^HA.%. In this case, we expect the 

magnetizations to flop into a perpendicular orientation 
with respect to the field. Let us first discuss the case 
where H0 is in the transverse plane. As the field is 
rotated in the plane, the magnetizations follow, always 
oriented approximately perpendicular to H0. That is, 
the angles are given by 

<PorF ^1,2=^. (17) 

We let <pit2=zk <p+e where the small amount of canting 
toward the field is given by e. The energy is given by 
Eq. (1) and the equilibrium conditions are obtained by 
setting 

dU/d(Pl=dU/dcp2=0 with 0 I = 0 2 = 4 T T . 

In terms of the new parameters, the conditions are 

6KZ sin6(<p+e)+AJkf2 sin2e 

= MHosm(<po— <p— e), 

6KZ s i n 6 ( - <p+e)+\M2 sin2€ 

= MH0 sin(<£>0— <P+e). 

(18) 

Expanding to first order in e and assuming strong 
exchange coupling H£$>HA,z and HE^>H0j we find 

e ~ # 0 s i n ( ^ 0 - <p)/2HE (19) 
and 

24£ 3 \ sin6<p=#o2 sin2(<p- <p0). (20) 

Solving this expression graphically, we find <po— <p—\^ 
which is what we expect for stable equilibrium. In the 
limit of HQS>HC, we let cpo— ip=\ir—f where f is a 
small deviation from §7r. Substituting into Eq. (20), 
we find 

f=(12#3X/#o2)sin6<p0. (21) 

Therefore the equilibrium orientations are given by 

<Pi,2=±[<p0- |7r+f]+€ (22) 

where from Eq. (19) 

e=(H0/2HE)co${. (23) 

From Eq. (3), we have for the torque 

T = - 2MH0 sinf sine. (24) 

In the limit of f and e small and Ho2>\HA,zHE the 
torque is 

T = - 1 2 i T 3 s i n 6 ^ 0 . (25) 

We now consider the case with the field in the {21.0} 
plane. With Ho along the (12.0) and (00.1) directions, 
we determine the equilibrium positions and find for 
Ho parallel to the (12.0) direction, 

mb=2MH0/(2HE+HA,z) 

and for H0 parallel to the (00.1) direction 

mc=2MH0/(2HE+HA,1) 

(26) 

(27) 

where HA,I=KI/M and nib and mc are the induced 

moments along the two respective directions. With 
Ho at an angle 60 with respect to the c axis, the energy is 

U=-MHo2\ 
2 sin20o 2 cos20o 

-2HE-{-HA,Z 2HE-\-HA -J- (28) 

Expanding in terms of HA,Z/HE and HA,I/HE and 

neglecting HA,Z with respect to HA,i, we find the 
following expression for the torque: 

2HE
2 
-HA,i$in2do. (29) 

We note that Eqs. (26) and (27) also determine the 
susceptibility parallel and perpendicular to the c axis. 
With HA,Z<£JHE, we have 

(X6-Xc)/X6= l-2HE/(2HE+HA,i). (30) 

Therefore, if # A , I ~ 1 0 4 and JS^^-IO6, the difference in 
the susceptibilities is of the order of 1%. 

Temperature Dependence of Anisotropy Energy 

The temperature dependence of the anisotropy 
energies in antiferromagnets is fairly well understood 
theoretically in two limiting temperature regions. The 
two regions are the region at very low temperatures 
where spin-wave theory is appropriate and the region 
at very high temperatures where the Weiss molecular 
field theory is appropriate. In this section, we will 
review the basic results in these two regions. 

At low temperatures Pincus30 used spin-wave calcu-

30 P. Pincus, Phys. Rev. 113, 769 (1959). 
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lations to derive the following relation 

K(T)/K(0) = lM(T)/M (0)]*»<n+D, (31) 

where K(T) is the anisotropy constant corresponding 
to the nth order surface harmonic, M(T) refers to the 
sublattice magnetization and K(0) and ikf(O) refer to 
the corresponding quantities at absolute zero. This 
relation is only valid over a temperature range such 
that AM/M(0)<£1. Short-range interactions are as­
sumed such that this derivation does not apply to the 
dipolar (long-range) contributions to the anisotropy. 
Zero-point fluctuation31 is also included. This result is 
analogous to the Abulov-Zener32 result for the short-
range interaction contribution to the anisotropy energy 
in ferromagnets. 

Calculations of M(T)/M(0) at low temperature have 
been made by Anderson,31 Kubo,33 and Eisele and 
Keffer84 using spin-wave theory. The result is35 

AM 1 /7r2w HAtl\rl r - i 2 

=~P(- ) J + ) -(5+1)— 
M(0) 5 \ 6 / \ HE/L3 TNJ 

(T T \ 
Xml , (32) 

\TH TAEJ 

where the lattice factor for cubic lattices of dimension 
a is 

P= (3»'Y**) (*#*») = (|7T2)(iZ)3/2 

and 

/ T T \ 6 TAB - 1 / TAE\ ( TH\ 
ml = £ -KAP J c o s I P — J . 

\TH TAB) TT2 T P-I P \ T J \ T J 

Ki is the Hankel function, S is the total spin, Z is the 
number of nearest neighbors, HE and HA are the 
exchange and anisotropy energies, \N is the number of 
magnetic ions for each sublattice, 

kTH=gnBHoll-(xu/2x,)l, 

and TAE= (hy/k)l2HAHE+HA2J12 is the temperature 
corresponding to the gap in the spin-wave spectrum 
for an antiferromagnet. 

The quantity m(T/TH,T/TAB) takes into account 
the suppression of spin-wave excitation because of the 
energy gap and it approaches unity for T/TAES>1. 

According to the molecular field theory in the high-
temperature region, the anisotropy energy is propor­
tional to the square of the spontaneous magnetization 
of each sublattice where the spontaneous sublattice 
magnetization is given by the Brillouin function, 

31 P. W. Anderson, Phys. Rev. 86, 694 (1952). 
32 N. Akulov, Z. Physik 100, 197 (1936); C. Zener, Phys. Rev. 

96, 1335 (1954). 
33 R. Kubo, Phys. Rev. 87, 568 (1952). 
34 J. A. Eisele and F. Keffer, Phys. Rev. 96, 929 (1954). 
35 F. Keffer (to be published). 

Mn, site Mn2 site 

FIG. 9. Fluorine distortions in CsMnF3. The coordinate systems 
at each Mn2+ site, the general coordinate system and their relative 
orientation to each other in the unit cell are shown. 

£,(F).36 '37Thatis, 

M{T)^NgixBSBs(Y), (33) 

where y= (g^BSHQn/kT). 

Ligand Field Anisotropy 

We now consider the anisotropy energy arising from 
the ligand field acting on each of the two Mn2+ sites 
(Fig. 1). This energy can be expressed as a function of 
the spin of the Mn2+ ion. In order to calculate the 
symmetry of the ligand field, we regard the surrounding 
F~ ions as point sources. The fluorine displacements 
about the Mnx and Mn2 sites are shown in Fig. 9.38 

Also shown are the individual coordinate systems and 
the general coordinate system (x,y,z). The magnitudes 
of the displacements are determined from the x-ray 
analysis21 with the point symmetry about each site 
preserved. The Mni sites are surrounded by a distorted 
octahedron of F2 sites which are displaced by £1, while 
the Mn2 sites are surrounded by three F2 and three Fi 
sites which are respectively displaced by £2 and £3-
The fluorine displacements and distances to the Mn2+ 

36 T. Nagamiya, K. Yosida, and R. Kubo, Advan. Phys. 4 
(1955). 

37 It is noted that T. Nakamura [Phys. Rev. 128, 2500 (1962)] 
has studied the temperature dependence of the magnetic 
anisotropy with tetragonal symmetry for an antiferromagnet 
near the Neel point. He finds the magnetic anisotropy to have a 
singularity of order (T— TN)~112. 

38 Because of the relatively low symmetry (P6i/tntnc) of the 
structure at room temperature, the lattice distances and space 
group, to a good approximation, are the same at low temperatures. 
In all our discussions, we will assume the same crystal structure 
at all temperatures. 
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sites are 

Mnis i te , fi=0.0262ai, 

a i = 2.1185 A, 

Xi=2.12 A; 

Mn2si te , ?2=0.044a2, 

^=0.1117a 2 , 

a 2 =2.118A, 

A2=2.12 A, 

X3=2.144A. 

Note that £3 is four times larger than £i. 
The potential in the region of each of the Mn2+ sites 

as a function of the fluorine displacements is first 
determined in the respective coordinate systems.39 The 
potentials about the Mni and Mn2 sites are written to 
fourth order in the distances from the site and to first 
and second order, respectively, in the lattice distortions 
fi and £2,3. A transformation to a set of crystal axes is 
then carried out. Since the single ion anisotropy energy 
transforms in the same way as the potential, it can be 
immediately written as an expansion in powers of the 
spin components. The magnetic energy per unit volume 
is then written in terms of the sublattice magnetizations 
Mi,2=%Ngy,BSi,2. Finally, in terms of the polar co­
ordinates, the magnetic energy per unit volume for the 
Mni site is 

Z7<D ^ j ^ a ) sirifli+jKV^ sin40i 

+K2
ay sin20x sin20i cos3^i (34) 

and for the Mn2 site is 

Z7<2> = 2STi<2> sin202+ir2
(2) sin402 

-K2
(2y sin202 sin202 cos3^2 (35) 

where Kia\ K2
a) and K2

ay are proportional to — £1 
and i£i(2), K2

{2\ and K2
{2)' are proportional to — (£3— £2) 

and — (£3
2+£22). The angles are defined in Fig. 8. Since 

all the coefficients are negative, we see that the crystal­
line fields arising from the distortion of the nearest 
neighbor fluorine octahedrons give rise to a negative 
axial anisotropy. That is, the transverse plane is an 
easy plane. 

To obtain an estimate of the anisotropy, the po­
tentials to lowest order are given by 

* ( 1 ) = i Z > i f i [ 2 5 , 2 - ( W + 5 y
2 ) ] , 

$ ( 2 ) = §Z>2 [(&-&)+—te2+£2
2)] 

L 2a2 J 
(36) 

X[2S.*-(S,2+Sy
2)], 

where D2—jDi*9 The energy is therefore of the form 
— (iKc)(3 cos20— 1). Assuming a small displacement 50 

39 K. Lee, thesis, University of California, Berkeley, 1963 
(unpublished). 

out of the transverse plane, tf~fiTc(50)2=JM#Aeff (60)2, 
and therefore, the effective anisotropy field HAQH 

= -3Kc/M. 
Now the single-ion anisotropy energy determined 

earlier by torsion measurements in KMnF 3 is equal to 

£>!€= -2KC/NS2= - 9 .6X10- 1 8 ergs/ion, 

where e=0.035 is a unit of strain in this lattice.9 The 
effective anisotropy field per unit strain is thus given by 

HA
Qii= SDxS/gpB^ 10.9X 104 Oe. (37) 

From Eqs. (36), we see that the single-ion anisotropy 
energies for the Mni and Mn2 sites are proportional to 
£1, and 

iC(?3-£2)+(l/(2a2))fe
2+fe2)]. 

The effective anisotropy fields due to the two sites are 
then determined to be 

fl^«(Mm) 

and 

F ^ « ( M n 2 ) = 

h 
-(10.9Xl04) = 1450Oe 

a(KMnF3) 

[fe-^)+(l/(2a2))fe2+g2
2)] 

4a(KMnF3) 

X(10 .9Xl0 4 )=1035Oe, 

where a(KMnF3) = 4.l72 A. Since there are twice as 
many Mn2 sites as there are Mnx sites, the average 
effective axial anisotropy field is 

HA°H(crystal) = 1170 Oe. 

Dipolar Anisotropy 

(38) 

The anisotropy due to classical dipolar interactions 
will now be determined. From the hexagonal symmetry 
of the structure, it is obvious that classical interactions 
will not give rise to any anisotropy in the transverse 
plane. This is because the dipole-dipole term in the 
Hamiltonian 3CD is only quadratic in the direction 
cosines, whereas the term in the anisotropy energy 
describing the sixfold symmetry is written to the sixth 
power in the direction cosines. Assuming parallel 
ordering within transverse planes and antiparallel 
ordering between adjacent planes, we will show that 
classical interactions give rise to a negative axial 
anisotropy. A brief discussion follows on the origin of 
the sixfold anisotropy in the plane. 

To determine the dipole field at a given Mn2+ site 
in the hexagonal structure we utilize the fact that the 
undistorted hexagonal structure can be obtained by 
two interlaced face-centered cubic (fee) sublattices. 
This should give a good estimate of the dipole field at a 
hexagonal site because only the Mn2 sites are displaced 
by 0.21 A from the center of gravity of its octahedron.21 

The (00.1) directions correspond to the (111) directions 



H E X A G O N A L A N T I F E R R O M A G N E T C s M n F , 153 

in the fee structure, in which case the transverse planes 
correspond to {111} planes. 

With ferromagnetic ordering in the planes and anti-
ferromagnetic ordering between adjacent planes the 
hexagonal stacking of the Mn2 + sites along the (00.1) 
direction is given by 

A(+)B(-)B(+)A(-)C(+)C(-)A(+)B(-)- • •, 

where A, B, and C denote the different crystallographic 
positions of the six Mn2 + ions in the unit cell and the 
( + ) and (•—) notation denotes the relative spin di­
rections. The distance between each plane of the 
undistorted structure is 0.41a, where a—6.213 A is the 
distance between Mn sites within a plane. For one fee 
lattice the ferromagnetically ordered stacking along 
the (111) direction is given by 

A(+)B(+)C(+)A(+)B(+)..., 

where the distance between (111) planes is (f)1/2# 
= 0.82a. Interlacing this lattice with one which has the 
inverted stacking along its (111) direction, 

C(-)B(-)A(-)C(-)B(-)A(-)---, 

we obtain the hexagonal stacking above. The distance 
between (111) planes of one sublattice with (111) 
planes of the other is now equal to 0.41a. 

We recall that classical dipolar interactions fail to 
yield cubic anisotropy. The anisotropy at a given site 
in one of the fee sublattices is therefore due to the array 
of dipoles of the other fee sublattice. McKeehan40 has 
computed the dipole fields in certain cubic arrays of 
equal parallel dipoles. These fields are computed for 
high symmetry positions. For a fee lattice the dipole 
field at a ( H i ) position is zero because of the local 43w 
point symmetry. 

Since we are interested in the dipole field at the ( H i ) 
position which corresponds to a dipole position in a 
(111) plane of the other fee sublattice, we determine 
this field by carrying out a field expansion about the 
( H i ) position 

(z-zo)2 

H(z) = H(zo)+(z-Zo)HQ+ H0c+- • • , (39) 
2 

where z denotes the axis in the (111) direction, z= (J)1/2a, 
20= (f)1/2#, -5"(20) is the dipole field at z0, and 
HQ= —L«y dH(z)/dZj and HQc= — £;<y dHQ(z)/dz3-
are, respectively, the quadrupole and octupole fields. 
The negative sign in HQ and Hoc is introduced because 
we are carrying out the summation from the field 
position ( i i i ) to the dipole positions. From the usual 
expression for the dipole field, we have 

HQ = - 3/X £ ( — ) (SZjTij2 - 5*/) , 
i<j \rij/ 

(40) 

# O C = 3 M Z ( — ) (3r i / -30s J V i i
2 +352 i

4 ) . 

40 L. W. McKeehan, Phys. Rev. 43, 913 (1933). 

For a given fee sublattice with all dipoles parallel to 
the (111) direction, this summation is extended to the 
seventh nearest neighbors. We find for the quadrupole 
and octupole fields 

HQ= - 88.57>/a4, 

# 0 c =+256 .41 M / a 5 . (41) 

With # ( £ o = i ) = 0, we finally have for the dipole field 
at the ( H i ) position 

ff*(tti) = 4530Oe. (42) 

This is then the dipole field due to one sublattice at 
the position of a dipole belonging to the other sub-
lattice. The energy of interaction is, therefore, -\-^HDM. 

We know the energy of interaction between two 
arrays of dipoles is just — KD(1—3 cos20), where 6 is 
the polar angle measured from the c axis. For dipoles 
parallel to the transverse plane, UU~—KD and for 
dipoles perpendicular to the plane UL=+2KD- Since 
we have calculated UI=^HDM>0, we see that the 
transverse plane is a plane of minimum energy. Dipolar 
interactions, therefore, tend to align the spins parallel 
to the transverse planes.41 

Again assuming a small displacement 86 out of the 
transverse planes, the energy is 

U~3KD562=%HAGUM562. 

Since KD = jHDM, the effective dipolar anisotropy field 
is given by 

HA
QU (dipole) = %HD=6795 Oe. (43) 

By summing Eqs. (38) and (43), we have for the 
total effective axial anisotropy field 

#A)1eff=7965 0 e . (44) 

We have seen that crystalline fields and classical 
dipolar interactions give rise to a negative axial anisot­
ropy. If the dipoles are treated as quantum dipoles, we 
expect that observed sixfold anisotropy in the trans­
verse plane can, thus, be understood. This reasoning 
follows from the fact that quantum dipoles can be 
thought of as precessing about their classical direction 
or their axis of quantization. The energy of the hex­
agonal array of dipoles, which can be considered as 
two fee arrays, depends upon the direction that axis 
takes with respect to the crystal axes. This was first 
worked out for a cubic ferromagnet by Van Vleck42 

using second-order perturbation of the dipolar inter­
action applied to energy levels in the Weiss molecular 
field. He considers the anisotropy to originate from an 
effective coupling energy 

3CD(QM) = L Di£Si-Sy-3rif*(Srr,y) ( S r r ^ ) ] 

41 J. I. Kaplan has shown [J. Chem. Phys. 22, 1709 (1954)] 
that for MnO which has antiferromagnetic ordering between (111) 
planes, magnetic dipolar interactions with next-nearest neighbors 
align the spins parallel to these planes. 

42 J. H. Van Vleck, Phys. Rev. 52, 1178 (1937), 
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plus a quadrupole-quadrupole coupling term, both 
taken between nearest neighbor spins. Di3- is a tem­
perature-independent coupling constant which need 
not be equal to gW/rrf. w i t h t n e dipoles treated 
quantum mechanically, there are terms nondiagonal in 
X)y Sf. 3&>(QM), thus giving rise to cubic anisotropy. 

Pearson43 has considered the dipolar anisotropy in 
antiferromagnetic cubic lattices. He obtains the cubic 
anisotropy from a general spin-wave calculation of the 
zero-point dipole-dipole energy and finds that this 
anisotropy is of the same magnitude as in the ferro­
magnetic case. 

We can determine an estimate of this in-plane 
anisotropy field by noting that it is approximately 
equal to the square of the nearest neighbor interaction 
energy divided by the exchange field. With d equal to 
the distance between nearest neighbor Mn ions, we 
find for this field 

HA,^(g»BS/d*y/HE~2 0e. 

Interpretation of Results 

(45) 

From the experimental susceptibility and torsion 
results, we may conclude that CsMnF3 has antiferro­
magnetic ordering with negative axial anisotropy. With 
a spin model such that the magnetizations are in the 
transverse plane and a critical field of 900 Oe indicated, 
a good estimate of the exchange field can be made from 
the susceptibility measurements. We see from Eq. (30) 
that for measurements at high fields Xb should be larger 
than Xc by 1%. We note in Fig. 2 that this is consistent 
with our observations. Assuming xn(4.2°K) to be 
nearly zero such that 1/A=X(4.2°K) = 39.7X10-3 emu/ 
mole and calculating i f = 1 3 850 emu/mole, we find 
for the exchange field 

HE=\M= 3.5X105 Oe. (46) 

value of 2 Oe. We also note that Eq. (16) gives the H2 

dependence observed at low fields. With this value of 
Z3X, the critical field for flopping is H^(72Ks\)1I2~900 
Oe which is consistent with observations. 

For the high-field results we see that Eq. (25) yields 
a sixfold dependence independent of the applied field. 
This agrees with the observations at high fields. Using 
the data obtained at 9000 Oe, we calculated HA,z= 1.1 
Oe, which agrees with our low field results. 

The high-field expression for the torque in the {21.0} 
plane yields the observed twofold symmetry and gives 
us a means for determining the axial anisotropy field 
HA,I. From the high-field data, we find 

The expressions for the torque for low applied fields 
is given by Eq. (16) and plotted in Fig. 3. The fit to the 
experimental data at the two lowest fields where the 
two- and fourfold terms dominate is quite good while 
the fit at the higher field where the sixfold term emerges 
is only fair. We believe the two and fourfold terms are 
due to antiferromagnetic domains while the sixfold 
term arises from the symmetry of the plane. Wall 
displacement would thus play an important role as the 
field is increased to 600 Oe. This wall motion would 
then cause a poor fit at the higher field since wall 
displacements were not taken into account in the 
theory. To determine Kz\ which arises from the sixfold 
symmetry of the plane, we Fourier analyzed the 600 Oe 
data. We find X3X=1.09X104 Oe2. Using the value of 
X obtained above, we find for the sixfold anisotropy field 

HA,z=36Kz/M=1.12 0e. (47) 

This is in reasonable agreement with our estimated 

^ , 1 = 7 5 0 0 Oe. (48) 

This is in satisfactory agreement with the theoretical 
value of 7965 Oe obtained from crystalline field and 
dipolar calculations. 

From Eq. (25) we see that by observing the tem­
perature dependence of the torque in the transverse 
plane at high fields, we are actually observing KZ(T). 
Assuming i£3(0)X=1.09X104 Oe2 we plot Kz{T)/Kz{0) 
versus T2 in Fig. 10. The field of 6 kOe is applied at 
45° with respect to a (12.0) direction. The temperature 
dependences of K*(T) and M{T) according to spin-wave 
theory are given by Eqs. (31) and (32). Since n=6 and 

10 20 

Temperature dependence of anisotropy energy K3 

H0 = 6 0 0 0 O e 

30 
Temperature 

40 
°K) 

50 60 

<12.0> 

1-19P(T/TN)2 

K t(T)/M2(T) 

\ ' K , ( 0 ) / M 2 ( 0 ) 

K 3 ( T ) / K 3 ( 0 ) > 

DWVTJ] 
T N =53 .5°K 

43 J. J. Pearson, Phys. Rev. 121, 695 (1961). 

0 1000 2000 3000 
Temperature squared (°K ) 

FIG. 10. Temperature dependence of the anisotropy energy K*. 
The open circles are the experimental points for K%{T)/K%{0). 
Also shown is the experimental temperature dependence of 
Ki(T)/M2(T), represented by the square points. The dashed 
lines are best fits to the experimental points. The dependences 
according to spin-wave theory and molecular field theory are 
indicated, respectively, by £l-19P(T/TNy] and [_Bhl*{T/TN)J 
where B^^T/TN) is the modified Brillouin function. 



H E X A G O N A L A N T I F E R R O M A G N E T C s M n F , 155 

m— 1, we have 

K*(T)/Kz(0) ~\-\9P{T/TNy 

120 

(49) 

for T<£TN. By fitting this expression to the data, we 
find P=0 .64 . In Fig. 10 we see that the rapid decrease 
of Kz(T) agrees with spin-wave theory for r < 1 0 ° K . 
At high temperatures, Kz(T) is proportional to the 
square of the sublattice magnetization given by Eq. 
(33). The square of the modified Brillouin function is 
also plotted in Fig. 10 and we see that Kz(T) agrees 
with molecular field theory for 3 5 ° < r < 7 V As yet, 
there is no satisfactory theory which would satisfy the 
large intermediate temperature region. 

The temperature dependence of the torque in the 
{21.0} plane gives us an experimental observation of 
i T i ( r ) / M 2 ( r ) . The main contribution to Kx is the 
long-range dipolar interactions. Therefore, in the spin 
wave region, we expect Ki(T)^M2-9(T).u From Eq. 
(29), it follows that for # 0 = 6 kOe and 0O=25°, the 
ratio Ki/M2 is given by 

2Ti(0)/AP(0) 
= 4.3r(r)XlO~ 3 . (50) 

We also note in Fig. 10 that for 3 0 ° K < r < 4 5 ° K , the 
torque is independent of the temperature. This is in 
agreement with molecular field theory as K\(T) oc M2(T) 
and therefore r is independent of the temperature. 

From torsion and susceptibility measurements we 
have thus shown CsMnF3 to be antiferromagnetically 
ordered. Because of the presence of an easy plane, we 
were able to determine the axial anisotropy field, which 
is 103 larger than the in-plane anisotropy. The tem­
perature dependence of Ki(T)/M2(T) and Kz(T) were 
also observed and the temperature region where spin-
wave theory and molecular field theory are valid were 
shown. We now proceed to investigate the dynamical 
magnetic properties. 

IV. ELECTRON RESONANCE MEASUREMENTS 

Experimental Results 

In this section we discuss the results of paramagnetic 
resonance in the temperature range from 298 to 63 °K 
and of antiferromagnetic resonance in the temperature 
range from 0.3 to 4.2°K. Two standard X-band micro­
wave spectrometers of the conventional magic- T design 
were used. One spectrometer, utilizing a rectangular 
reflection cavity which resonates in a TEioi mode, was 
used from 298 to 63°K and from 4.2 to 1.7°K. The two 
temperature ranges were obtained by pumping on 
liquid oxygen and liquid helium, respectively. The 
other, a low-temperature spectrometer (described by 
Ruby et a/.45), was used to take data from 1.5 to 0.3°K. 
I t utilizes a cylindrical cavity resonating in a TEm 

44 T. Oguchi, Phys. Rev. I l l , 1063 (1958). 
45 R. H. Ruby, H. Benoit, and C. D. Jefferies, Phys. Rev. 127, 

51 (1962). 
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mode and attains the low temperatures by adiabatic 
demagnetization. Because of the large signal-to-noise 
ratio, field modulation was not required. 

Using a speck of diphenyl-picryl-hydrazyl (DPPH) 
with g= 2.0036 as a marker, we observe in the para­
magnetic region a single resonance line with an isotropic 
g value of 1.9989± 0.003. Considering the amount of 
covalent bonding observed in KMnF3,46 the deviation 
from the free electron g value is not unexpected. As 
the temperature was lowered toward the Neel point, 
the resonance line was observed to decrease in amplitude 
with a corresponding increase in the half-width at half-
amplitude. This large increase, shown in Fig. 11, has 
been observed in other antiferromagnets such as 
MnF2.47,48 In contrast to this increase Teaney49 observed 
that the linewidth and amplitude of the resonance 
line in KMnF 3 remained constant as the temperature 
was lowered through its Neel point. This may be related 
to the fact that KMnF 3 is nearly cubic, whereas MnF 2 

and CsMnF3 are highly anisotropic. 
A single resonance with a half-width at half-amplitude 

A#i / 2 = 12db3 Oe was observed at 4.2°K. This is about 
as narrow a resonance line as has been observed so far 
in an antiferromagnet. As expected, the resonance field 
in the transverse plane showed a sixfold angular vari­
ation consistent with the torsion results. The resonance 
field was a maximum and a minimum with Ho, respec­
tively, along the (12,0) and (10.0) directions. This is 
shown in Fig. 12, which is a plot of the angular de­
pendence of the resonance field in the transverse plane. 
In another measurement the sample was strained, 
causing an increase of the line width to Ai7i /2=40zb5 
Oe and a distortion of the sixfold symmetry. We found 
that the crystals could be strained quite easily by 
applying an excessive amount of GE-7031 varnish. A 
half-width of 40 Oe was not unusual for a strained 
sample. 

Figure 13 shows the resonance field as a function of 

46 R. G. Shulman, K. Knox, and B. J. Wyluda, Bull. Am. Phys. 
Soc. 4, 166 (1959). 

47 L. R. Maxwell, Am. J. Phys. 20, 80 (1952). 
48 L. R. Maxwell and T. R. McGuire, Rev. Mod. Phys. 25, 279 

(1953). 
49 T. Moriya, Phys. Rev. 117, 635 (1960). 
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the angle ^ in the {21.0} plane. The angle ^ is meas­
ured with respect to a (12.0) direction. Since the 
resonance field is directly proportional to (cos^) - 1 only 
the component of the static field in the transverse 
plane contributes to the observed resonance. This is 
not surprising considering the presence of a large 
negative axial anisotropy energy. 

Proceeding from 4.2 down to 1.7 °K, the resonance 
line was observed to shift to a lower field position. The 
line width correspondingly narrowed slightly to 
A£Ti/2=lldzl Oe. Below 1.5°K there were as many as 
six lines with a peak to peak separation of the highest 
field and lowest field lines of only 16 Oe. At 9.6 kMc/sec 
the multiple lines appear at resonance fields of 3 kOe 
and lower. Of the six lines, there was one that was 
always more prominent than the others. The total 
half-width was 1 1 ± 1 Oe. These lines were definitely 
not observed at 4.2°K. As the temperature was lowered 
to 0.3 °K, the lines shifted to lower field positions and 
decreased in amplitude with a corresponding broad­
ening. At 0.3 °K, the resonance field was well below 
500 Oe. Figure 14 shows this shift in the resonance field 
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of the most prominent line as a function of temperature. 
The dc field was applied along the two principal di­
rections in the transverse plane. The square of the 
resonance field was found to be a linear function of 1/T. 
This is shown in Fig. 15. 

This strong temperature dependence at liquid-helium 
temperatures was first observed in KMnF 3 by Heeger 
et a/.11'12 Heeger11 has shown that this temperature 
dependence at low temperatures is the result of a 
strongly temperature-dependent anisotropy field seen 
by the electrons due to their hyperfine interaction with 
the Mn55 nuclei. Each sublattice sees this anisotropy 
field HA,T pointing along its equilibrium direction and 
the 1/T dependence originates from the nuclear sus­
ceptibility. The temperature dependence of the sixfold 
anisotropy in this temperature region, as given by Eq. 
(47), contributes very little to the observed effect. 

The fact that Ho2 is linear in 1/T confirms earlier 
observations that there does not exist a weak ferro­
magnetic moment. If such a moment had existed, there 
would be a term HQHA.C in the resonance condition 
which is proportional to 1/T, where HA,C represents 
the various mechanisms which would give rise to a 
canting of the sublattices.11,12'49'50 

I t is interesting to note that the apparent microwave 
cooling of the nuclei as observed in11,12 KMnF 3 was not 
found even at the relatively low temperature of 1.8°K. 

Theory of Magnetic Resonance Frequencies 

From our experimental observations, we saw that 
in the presence of a large negative axial anisotropy, 
only the component of the static field in the transverse 
plane contributes to the resonance condition. The 
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«°P. Pincus, Phys. Rev. Letters 5, 13 (1960), 



H E X A G O N A L A N T I F E R R O M A G N E f C s M n F 3 157 

magnetic resonance frequencies will, therefore, be 
considered in this section with the static field confined 
to the transverse plane. Again the molecular field 
approximation for a two-sublattice antiferromagnet 
will be assumed. We will first derive the resonance 
frequencies with the static field at an arbitrary angle 
to a preferred or easy axis. The static field will be 
assumed to be much larger than the critical field for 
flopping. The characteristics of the normal modes are 
determined for # 0 = 0 and for H0 applied perpendicular 
to a preferred axis. Finally, we discuss briefly the rf 
susceptibility. 

The temperature dependent anisotropy field HA.T 
arising from the hyperfine interaction gives rise to the 
additional terms — ami-Mi—0:1112-M2 in the energy 
where 

HA,T=cLm=(A/giiB)(In). (51) 

(Iz) is the average nuclear spin, mi, 2 are the nuclear 
magnetizations of the two sublattices and A is the 
hyperfine coupling constant. This field HA,T looks like 
an axial anisotropy field along the equilibrium direction 
in the transverse plane. We will initially neglect this 
contribution, but will include it in the final result. In a 
later section on the theory of electron-nuclear double 
resonance modes, this contribution is included explicitly. 

Static Field at Arbitrary Angle in Plane 

The static field H0 is assumed to be larger than Hc 

and it is oriented at an arbitrary angle <po in the trans­
verse plane. Initially neglecting the hyperfine energy, 
the total energy is given by Eq. (1) with the angles 
defined in Fig. 8. Expressed explicitly in terms of the 
angles, the energy is 

U=\M2[_cos61 cos02— sin0i sin02 cos(>i+ <p2)] 

+M#o[sin02 cos(>o+ ¥2) — sin0i cos(<p0— <Pi)~] 

-Z3Ccos6^i+cos6^2]+KiCeos20i+cos202]. (52) 

Since i£i»iT 3 , we neglect the perturbation out of the 
transverse plane due to Kz. The equilibrium conditions 
are just given by Eqs. (21), (22), and (23). 

We now solve for the resonance frequencies following 
a procedure which does not require the transformation 
to two new coordinate systems. This procedure is quite 
general and considers only the small angular motions 
of Mi and M2. Circular precession of the magnetizations 
is not assumed. For small oscillations 661,2 and 8 <pi,2 
about the equilibrium positions, the angular coordinates 
are given by 

<Pi )2==F(i7r--A) + e + 5 ^ i ) 2 , 

where A= po+t and e and f are given by the definitions 
(21) and (23). Substituting these relations into Eq. 

1/T ^IC1} 
FIG. 15. Resonance field squared as a function of 1/T. 

(52), expanding to second order in 50 and 8<p, we have 

U^&tfZMHo s in(f+e)+Xif2 cos2e 
-36Kd cos6(A+e)] 

-±8<p22tMHo s i n ( f - e ) - A M 2 cos2e 
+36 i£ 3 cos6 (A-e ) ] 

+XM2lcos2e8cp18cP2+861862] 

+^861
2IMH0 s in(r+e)+XM 2 co s2e+# i ] 

~^862
2lMH0sm(t-e)-\M2 cosle-Ki]. (54) 

The coefficients of the linear terms in 8<pi and 8(p2 
vanish in the limit of strong exchange, giving the 
relations 

~MH0cos({+e)+\M2 sin2e-6Kzsm6(A+e) = 0, 

-MH0cos({-e)+\M2sm2e+6K3$m6(A-e) = 0. 

These relations just give the equilibrium conditions 
obtained earlier. To a good approximation, the equa­
tions of motion are 

d5<pi,2 7 dU 
==F , 

dt M d86i,2 

(56) 
d86i,2 7 dU 

=± . 
dt M d861>2 

Assuming an exp(ia>t) dependence we have the usual 
four by four secular determinant. Expanding the terms 
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to second order in e, we obtain 

( c o / 7 ) 2 ^ W ( l + s i n 2 r ) - i y ^ A , 3 cos6A+HEHA,i 
±LHEHA>1-±Ho2(5sm2r-l)-#i^3Cos6A]. (57) 

With f given by Eq. (21) and A= <po+f, the two reso­
nance frequencies are 

^1/y)^Ho2-2HEHA,zCOs6<po 
and 

(o)2/y) = 2HEHA,i' 

Since the hyperfine field looks like an axial anisotropy 
field its effect on the resonance condition for an anti-
ferromagnet is 2HEHA,T?X^2 where HA,T is given by 
Eq. (51) and HE^>HA,T. Therefore, we finally have 
for the two modes 

(a) H 0 =0 

(oh/yy=Ho2-2HEHA,3Cos6<po+2HEHA,T (58) 

and 
(co2/T)2= 2HEHA, I+2HEHA, T , (59) 

where the positive sign in the hyperfine term arises 
from the fact that the coupling energy amM is a 
minimum along the equilibrium directions. With 
# o - 1 0 3 , 2HE^10\ HA>3-1, # A , I ~ 1 0 4 and HA,T~1 
at 4.2 °K, we see that cox corresponds to the low-fre­
quency mode which we observe at X-band and co2 

corresponds to the high-frequency mode. 

Normal Modes and rf Susceptibility 

Now we consider the characteristics of the normal 
modes with Ho=0 and with Ho applied perpendicular 
to a preferred axis. The normal modes are determined 
by finding the ratios of the angular displacements 
8(pi/8<p2, 861/662, 80i/8<pi, and 862/8^2 from the secular 
determinant. For the first case where H0=0, the ratios 
for the low-frequency mode, a>i, are found to be 

8<p!/8cp2= -86^862= - 1 , 

861/8<Pl= ~862/8(p2= - i p ( 0 ) , 
(60) 

where p(0)= (HA,z/2HE)1/2 and the ratios for the high-
frequency mode, co2, are found to be 

8<Pi/d<P2=-dd1/dd2=+l, 

5 0 i / ^ i = -862/8cp2= + i / ? ( 0 ) , 
(61) 

where 0.(0) - (2HE+HA,,)/ (2HEHA, i)1/2. For 2HE~ 106, 
HA>1^104, and HA,Z~1, these ratios are p(0)~10""3 and 
0 (0 )^10 . The (0) notation designates this case where 
# 0 = 0 . p(0) and 0(0) are just the eccentricities of the 
elliptical orbits described by the motion of the mag­
netizations. The characteristics of the normal modes 
are, therefore, determined from Fig. 8 and these ratios 
and these modes are shown in Fig. 16(a). 

For the low-frequency mode, the magnetization 
vectors Mi and M2 precess at frequencies wi(0) counter-

fil C. Kittel, Phys. Rev. 82, 565 (1951). 
52 F. Keffer and C. Kittel, Phys. Rev. 85, 329 (1952). 
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FIG. 16. Normal modes (a) with H0 = Q and (b) with H0 applied 
along a (10.0) direction. The angle A is given by equation (7) with 

clockwise (or clockwise) about their respective equi­
librium directions and they are out of phase by 71-. They 
describe equal size ellipses with the ratio of minor to 
major axes equal to p(0). There is a small net oscillating 
moment in the z direction. 

For the high frequency mode, the magnetization 
vectors precess counterclockwise (or clockwise) at 
frequency a>2(0) about their respective equilibrium 
directions, but they are in phase. They describe equal 
size ellipses with the ratio of major to minor axes equal 
to j3(0). There is a net oscillating moment in the y 
direction. 

From Fig. 16(a), we see that the rf susceptibility can 
be determined quite simply from the Kramers-Kronig 
relations. I t can be shown that x"(wo) = (xocoo/2Acoi), 
where x" is the imaginary part of the rf susceptibility, 
coo is the resonance frequency, xo is the static suscepti­
bility, and Acoi is the half-width at half-intensity. There­
fore, for the low-frequency mode, with an rf field H\ 
parallel to the z axis, 

X"(O)I) = %XC(UI/AQ>1); (62) 

and for the high-frequency mode, with Hi parallel to 
the y axis, 

x"(w 2 ) = ixic(a>2/Aa>2) , (63) 

where Xc and xic are the static susceptibilities parallel 
and perpendicular to the c axis. 

Let us now consider Ho applied perpendicular to the 
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preferred direction. The equilibrium positions of the 
two sublattices are canted toward the field by an angle 
A given by Eq. (7) with <po=$=%r. The resonance 
frequencies are given by Eqs. (58) and (59) with 
<po= Jx. The ratios of the angular displacements have 
exactly the same form as Eqs. (60) and (61) except 
that the eccentricities of the orbits are changed. In 
this case we have 

W+2HEHA,Z)112 

p = — y 

2HE 
(64) 

(2HE2-WO2+HEHA,Z) 
p= 

(2HJHA,i)1/2 

where p~10~3 , /3~10 for # 0 ~ 3 X 1 0 3 . The relative 
phases are not changed. 

However, as shown in Fig. 16(b), the net oscillating 
moments for the low- and high-frequency modes are 
different from those in zero field. In the low-frequency 
mode the magnetizations swing back and forth in phase 
such that the net moment oscillates elliptically in 
essentially the xy plane. Because of the large eccen­
tricity (~10~3) we may assume that the moment is 
only rocking in the transverse plane. In the high-
frequency mode the net oscillating moment is always 
pointing along Ho. This is just due to the motion of the 
magnetizations being in phase. 

Interpretation of Results 

The broadening of the paramagnetic resonance line 
with a corresponding reduction in the absorption as the 
Neel temperature is approached is characteristic of all 
noncubic antiferromagnets. Maxwell and McGuire47,48 

have earlier reported such observations. Tsuya and 
Ichikawa53 derived an equation for the linewidth as 
the temperature approaches the Neel point. However, 
they neglect any anisotropy energy that exists and 
their result is valid only for simple cubic and body-
centered cubic structures. As yet we know of no satis­
factory general theory explaining these observations. 

I t is of interest to compare our observations with 
Anderson and Weiss' prediction for the exchange 
narrowed dipolar linewidth.54 They derive the general 
relation for the half-width at half-power 

AH1/2=HP
2/HE, 

where 
# „ 2 = ( 5 . 1 ) ( g W » W ( S + l ) , 
HE=2M{J/glxB)[_S(S+\)Ji\ 

J is just the exchange integral, 5 = f , and N is the 
density of spins per cm3. Using the usual molecular 
field relations for / 3 6 , 5 4 and the value of the measured 

53 N. Tsuya and Y. Ichikawa, Phys. Rev. 83, 1065 (1951). 
64 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 

(1953). 

susceptibility Xi=x(TN), we find AH1/2~50 Oe, com­
pared to the observed value AJH

ri/2(298°K)«75 Oe. 
Considering the approximations that were made in 
obtaining the above relation, the comparison is fairly 
good. 

At liquid-helium temperatures, it is obvious we are 
observing the low-frequency mode, coi. Equation (58) 
not only satisfies the observed sixfold symmetry, but 
by comparing with the experimental observations it 
shows the (12.0) directions to be the easy directions. 
We can also determine HA, 3 by the relation 

HQ(AHO/A<PO) 
HA,z= — • (65) 

6HE sin6<po 

With # J S 7 ~ 3 . 5 X 1 0 5 Oe and data such as that plotted 
in Fig. 12, we calculate £ T A I 3 ~ 1 Oe. These results are 
consistent with our static measurements. 

To determine HA,T, we assume £7^,3=1.1 Oe, and 
fit the experimental data shown in Fig. 15 to Eq. (58). 
We find 

HA.T=9.15/TOe. (66) 

This is compared to the values of 9.7/T Oe observed 
in KMnF 3

 n-12 and 9.43/T Oe calculated for RbMnF3.17 

The reason for the single resonance line degenerating 
into at least six lines at temperatures below 1.5 °K is 
understood as due to the resonance field being close to 
the critical field for flopping. These lines may then 
arise from individual domains. To obtain a better 
understanding of these lines, lower frequency (3-6 
kMc/sec) measurements should be made. 

From torsion measurements, we measured 
HA, I = 7 5 0 0 Oe. The high-resonance mode given by 
Eq. (59) should, therefore, occur in the liquid-helium 
temperature region at co/27r^200 kMc/sec or 1.5 mm. 

V. NUCLEAR-ANTIFERROMAGNETIC 
DOUBLE RESONANCE 

The strong temperature dependence of the anti-
ferromagnetic resonance field in the liquid-helium 
temperature range, as shown in Figs. 14 and 15, provides 
a means for observing the Mn55 nuclear resonance. 
With the dominant hyperfine interaction proportional 
to the nuclear magnetization, it is possible to observe 
the nuclear resonance absorption by monitoring the 
antiferromagnetic resonance field at a fixed microwave 
frequency. By supplying rf power at the nuclear reso­
nance frequency to saturate the nuclear magnetization, 
a shift of the antiferromagnetic resonance to its high-
temperature position is expected. Relevant theory by 
deGennes et al.55 gives the expressions for the frequency 
CON of the nuclear modes in a ferro- and antiferromagnet. 

65 P. G. de Gennes, F. Hartmann-Boutron, and P. A. Pincus, 
Compt. Rend. 254, 1264 (1962); P. Pincus, P. G. de Gennes, 
F. Hartmann-Boutron, and J. M. Winter, J. Appl. Phys. 34, S 
(1963); P. G. de Gennes, P. A. Pincus, F. Hartmann-Boutron, 
and J. M. Winter, Phys. Rev. 129, 1105 (1963). 
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This theory predicts that at a given temperature T, 
there is a characteristic uN(T) and it should be possible 
to partially saturate the nuclei. However, Heeger 
et al.,12>n Portis et alu and Witt and Portis14 have 
observed in KMnF 3 that at a given T and above a 
threshold rf field, HTf, the nuclear modes can be excited 
at any driving frequency between UN(T) and JNHN 
= ynaM. The unexpected behavior is explained by a 
spatial variation in nuclear frequency as the result of 
electronic pinning.16 The regions resonating at the 
driving frequency can then grow at the expense of 
those regions resonant at <JON(T). In this section, we 
report on the double- (nuclear-antiferromagnetic) 
resonance measurements in CsMnF3. We also determine 
the hyperfine field A(S) for the two Mn55 sites and 
derive the macroscopic equations for the nuclear-
electron spin system coupled by the hyperfine 
interaction. 

Experimental Results 

A 1-mm size crystal is mounted at the center of a 
small single loop rf coil which is mounted flush to the 
side of the rectangular cavity used earlier. According 
to the normal modes, an enhancement to the rf suscepti­
bility is obtained with the microwave field Hi perpen­
dicular to the static field # 0 in the transverse plane. I t 
would be advantageous then to have the rf field Hri 
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FIG. 17. Antiferromagnetic resonance field at 4.2°K as a function 
of radio frequency for a (a) strained and (b) unstrained sample. 
HQ is parallel to a (10.0) direction. 

also in the plane. However, due to the geometry of the 
cavity, Hxi is always perpendicular to Hi. We, therefore, 
mounted the sample on a 45° polystyrene wedge such 
that the transverse plane was at a 45° angle with 
respect to Hi and HTf. HQ was applied in the plane along 
a (10.0) direction. 

A sample strained (Aili/2=43dz2 Oe) with excessive 
GE-7031 varnish and an unstrained sample (AH 1/2 
= ll=b2 0e) were used. Figures 17(a) and 17(b) show 
the antiferromagnetic resonance field position as a 
function of the applied rf frequency. With no rf exci­
tation, the resonance field positions for the strained 
and unstrained samples were 3.29 and 3.12 kOe, re­
spectively. The resonance field was observed to shift 
to a higher field position corresponding to a high-nuclear 
temperature. In the case of the strained sample, a total 
shift of ^ 2 2 0 Oe was observed from 624 to 668 Mc/sec 
(region I ) . A discontinuous drop to the zero rf position 
occurs at 668 Mc/sec which indicates a saturation of 
the nuclei. However, another region (II) where the 
line shifts by ^ 8 0 Oe occurs from 671 to 677 Mc/sec. 
In the case of the unstrained sample, the same effect 
is observed in the two regions except that it was ex­
ceedingly more difficult to shift the resonance field 
above 665 Mc/sec. This is compatible with the theory 
of spatial variation in nuclear frequency due to elec­
tronic pinning in the region of volume imperfections 
and strains. The electron resonance positions above 668 
Mc/sec are shifted slightly to higher fields due to 
heating. In both regions, as the rf power is increased, 
the high-field line was observed to grow at the expense 
of the low-field line. At intermediate rf power levels 
there is a partial shift such that the high- and low-field 
lines are simultaneously present. Both field positions 
are independent of power. This emergence of the line 
at a definite higher field position was observed also in 
KMnF3.14-16 In both samples, we observed that as the 
driving frequency approached higher frequencies, more 
power was required to shift the line to its high-field 
position. This is consistent with theory.16 We also note 
that the data within region I falls on a straight line 
which has a slope of 5.0 Oe/Mc/sec. 

Hyperfine Field and Nuclear Magnetic 
Resonance Modes 

The hyperfine field A(S) is determined for the two 
Mn55 sites by making corrections for the volume of the 
distorted F~ octahedrons. Ogawa56 has determined the 
fluorine volume dependence of A from paramagnetic 
resonance measurements of Mn2+ in KMgF3 , KCaF3, 
and K2MgF4 by plotting A versus (Mn—F)3, where 
Mn—F is the bonding distance. We can obtain a good 
estimate of A (Mni) and A (Mn2) from a plot of Ogawa's 
data. With F ( M m - F 2 ) = 12.67 A3 and F ( M n 2 - F 2 , 
M n 2 - F i ) = 12.05 A3 we find A{Un1)= (92.3=1=0.9) 
X10-4 cm"1 and i ( M n 2 ) = (91.9=b0.9)X10~4 cm'1 . 

56 S. Ogawa, J. Phys. Soc. Japan 15, 1475 (1960). 
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Neglecting zero-point excitation such that (5)=f , we 
have 

i l (Mn 1 )<5) /A=692±7Mc/sec (67) 
and 

A (Mn2)<5)/A= 688±7 Mc/sec. (68) 

We will show that the nuclear resonance frequency is 
directly proportional to yNaM, where aM is the hyper-
fine field at the nucleus and y^ is the nuclear magneto-
mechanical ratio. Since the Mni and Mn2 sites are 
equal to one third and two thirds, respectively, of the 
total Mn2 + sites, we have for an average saturation 
magnetization frequency 

(yNaMo)/2ir = 689± 7 Mc/sec. (69) 

We now derive the nuclear resonance frequencies 
for the coupled nuclear-electron spin system. An 
average hyperfine field yNaM which does not make a 
distinction between the two Mn2 + sites will be assumed. 
To simplify the algebra, Ho(^>Hc) is again oriented 
perpendicular to the preferred axis in the transverse 
plane. With 1111(̂ 3,̂ 3) and m2(04,<£>4) denoting two 
sublattices and | mi | = 111121, the total energy is given 
by Eq. (52) plus the additional terms 

—mH o^sindz sin<p3+sin04 sin<£>4[] 

—atnM[$mdi sin03 cos(<pi— <p3) 

+sin02 sin#4 cos(<p2— <p*) 
+ COS0iCOS03+COS02COS04], (70) 

where 0i, 02, <pi, and <p2 are defined in Fig. 8, 03 and #4 
are the polar angles measured from the z axis and <pz 
and (pi are the azimuthal angles measured, respectively, 
from the +x and — x axis. To determine the equilibrium 
positions, we let 0 i=0 2 = |w=0 3 =04 , <pi = <?2= e, 
<p3=<P4=fi, and set 6U/de = 0=dU/dQ. With 
HA,T=onn and Hjsr=aM, we find 

Ho(l-(m/M)) 
e= , and Q= €+HO/HN> 

2HE+2HA,T+HA,Z 

Since at 4.2°K, HE^>HA,T+HA,Z and m / i f « l , we have 

e~Ho/2HE, and O ~ f f 0 ( ( l / 2 ^ ) + ( l / f l » ) . (71) 

Just as before we assume small angular motions of Mi, 
mi, M2, and m2 such that 

Oi^&r+ddi, f = l , 2 , 3 , 4 

^ 1 , 2 = 6 + 5 ^ 1 , 2 , (72) 

<£>3,4=0+5<p3,4. 

Substituting into Eqs. (52) and (70) and expanding 
to second order in 50, 8<p, we have for e and £2 small 

U^{M/y)A{8^+8ipi)+\{M/y)B{8el^86i) 
+ (M/y)C(dcPl8(p2+8e18d2) 
+i(^/7^)Z>(^32+^42+503

2+5042) 
- (m/yir)E(8<pid<ps+&<p£<pi+MiMi+66tfe4), (73) 

where 
A = y(H0e+HE+HA>z+HAtT), 
B = y(Hoe+HE+HAtl+HA)T), 

C=yHE, (74) 

D=yN(H0Sl+HN), 

E=yNHN. 

And according to the equilibrium conditions the co­
efficients of the linear terms vanish. Since we are only 
interested in solving the nuclear equations of motion, 
we assume the electron resonance conditions (58) and 
(59). At these relatively low nuclear frequencies, the 
electrons follow adiabatically the fields given by A/y 
and B/y. Therefore, we determine the displacements 
of the sublattice magnetizations as a function of the 
displacements of the nuclear magnetization by setting 
dU/dd<pit2= dU/dd6it2=0. The displacements are 

5pi,2= (yatn/a)i2)(A8(pzt4—C8<p4tz), 

50i,2= (yam/af) {B86zA-C86i)Z), 

where coi2 and C022 are the electron resonance frequencies. 
After substituting Eqs. (75) into expression (73) for 
the energy we determine the equations of motion to a 
good approximation by 

38<pzA/dt= =F (yN/m) (dU/d86zA), 

38BZA/dt= ± {yN/m) (dU/d8<p3A). 

On solving the secular determinant, we find for the 
nuclear resonance frequencies 

^Ntl/yN)2 = HN^l- (cooM)2] , (77) 

{o>N,2/yNy=HN*[\- (a>o/co2)
2], (78) 

where (coo/7)2 = 2\Mam would be the antiferromagnetic 
resonance frequency in the hyperfine anisotropy field 
alone and y^HN is the saturated nuclear resonance 
frequency. The nuclear resonance frequency squared is, 
therefore, depressed by an amount proportional to the 
nuclear magnetization. We see also that even with no 
external field the nuclear resonance frequencies are 
split where the low- and high-frequency nuclear modes 
correspond respectively to the low- and high-frequency 
electron modes. This splitting is due to the presence 
of a weak sixfold anisotropy in an easy plane (large 
negative axial anisotropy) which gives rise to elliptical 
precession of the electron resonance modes. These two 
nuclear modes are exactly analogous to the two nuclear 
modes for a canted antiferromagnet.15,16,57 

From the secular determinant, we determine the 
relative amplitudes of the two nuclear modes. For the 
low-frequency nuclear mode, COJV\I, b<pz/h<pA= — 1, 
503/504= + l and for the high-frequency mode, COJV,2, 
8<p3/8(p4= + l, 503/504= — 1 . Corresponding to the low-
frequency electron mode where Mi and M 2 rock 

57 A. M. Portis, G. Is. Witt, and A. J. Heeger (to be published). 
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together in the transverse plane [Fig. 16(b)], the 
low-frequency nuclear mode represents also a rocking 
together of mi and m2 in the plane. This rocking of the 
nuclear magnetizations in the plane is therefore being 
driven by the low-frequency mode of the electrons. 
For the high-frequency mode mi and m2 oscillate w 
out of phase and perpendicular to the transverse plane. 
Let us now consider the enhancement factor relating 
the effective rf field seen by the nuclei to the applied 
rf field, HX.5S With Hx applied along the preferred axis 
perpendicular to Ho, it can be shown quite easily that 
the enhancement factor is given by 

7 ? ~ 4 ( C O 0 / C O 1 , 2 ) 2 ( M / W ) ( F 0 / ^ E ) . (79) 

For the low-frequency mode, rj^ 103, and for the high-
frequency mode, which was shown earlier to be in the 
far-infrared, 77̂ —-1. Therefore, in the presence of the 
low-frequency mode, it is difficult to observe the high-
frequency mode. In fact we see from the normal modes 
that the excitation of the high-frequency mode occurs 
when the rf field is parallel to the dc field. 

An estimate of the amount of frequency depression 
for the low-frequency mode at 4.2°K is given by 

I &Oj\r,i/coAr,i I ^ (y2\Mam/o)i2)^0.3, 

which is relatively large. 

Interpretation of Results 

The partial shift of the antiferromagnetic resonance 
as a function of rf power is due to the partial saturation 
of the nuclei. The extent of the saturation is sufficient 
to shift the nuclear resonance up to the driving fre­
quency. Driving at JNOCM fully saturates the nuclear 
magnetization and gives rise to the maximum possible 
shift in the antiferromagnetic resonance. Reducing the 
driving frequency reduces the amount of saturation 
and the antiferromagnetic resonance field drops 
accordingly. 

Since we have derived the nuclear resonance modes 
assuming an average hyperfine field, the above results 
should be valid for nuclear driving frequencies up to 
the calculated average saturation at (yNaMo)/2w 
= 689dz7 Mc/sec. However, we observe a saturation at 
668 Mc/sec which is (3dbl)% smaller than the expected 
value. This indicates the presence of a zero-point 
reduction in the electron spin {S) expected from spin-
wave calculations by Anderson81 and Kubo33 and from 
calculations involving linked-spin-cluster expansions 
by Davis.59 With four nearest neighbors and 6 ,=f, as 
for the Mn2 sites in this compound, spin-wave theory 
and Davis' perturbation expansion predict, respectively, 
a 7.88 and a 4.36% reduction in (S). The observed re­
duction is in reasonable agreement with the two ex­
pected values. 

68 A. M. Portis and A. C. Gossard, Suppl. J. Appl. Phys. 31, 
205 S (1960). 

69 H. L, Davis, Phys. Rev. 120, 789 (I960), 
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FIG. 18. Mn55 nuclear resonance frequency versus 
nuclear temperature. 

I t is interesting to note that in KMnF3 , with six 
nearest neighbors, there was at best a (0 .5±1)% 
observed reduction.15,16 Spin-wave theory and Davis' 
calculations predict, respectively, a 3.12 and 2.49% 
reduction. The zero-point excitation is, therefore, more 
easily observed in materials with fewer nearest neigh­
bors which is in agreement with the two theories. 

The results above 668 Mc/sec are not well under­
stood. The observed effects may be due to regions of 
smaller zero-point excitation. More extensive experi­
mental measurements and theoretical study are needed. 
Our discussion is, therefore, restricted to region I. 

Combining Eqs. (58) and (77) for the low-freqeuncy 
electron and nuclear modes, we find HQ/VN 
= (u1/yyNHN) = 5.1 Oe/Mc/sec for 7 ^ ^ / 2 ^ = 6 6 8 
Mc/sec. This is in agreement with observations. 

From a comparison of the observed rf frequency-
resonance field relation with the observed temperature 
dependence of the antiferromagnetic resonance field 
(Fig. 14), we can determine the temperature dependence 
of the nuclear resonance frequency. Figure 18 shows a 
plot of the nuclear resonance frequency (the driving 
frequency) as a function of the extrapolated nuclear 
temperature. The data are those of the strained sample. 
The observed reduction in nuclear resonance frequency 
with decreasing nuclear temperature is in excellent 
agreement with theory. The frequency extrapolated to 
high temperatures appears to be 668 Mc/sec which is 
in accordance with a 3 % zero-point reduction in the 
electron spin. 

SUMMARY 

Whereas KMnF3 is a canted antiferromagnet and 
RbMnF 3 is a simple cubic antiferromagnet at low 
temperatures, we have shown from static and dynamical 
magnetic measurements that below 53.5°K CsMnF3 is 
a hexagonal antiferromagnet with a large negative 
axial anisotropy. Throughout our investigation we have 
assumed a two-sublattice model, a space group P6%/nimc 
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at low temperatures and a magnetic unit cell identical 
to the chemical unit cell. From the measurement of 
an average perpendicular susceptibility at 4.2 °K, an 
exchange field HE=S.5XlOb Oe was determined. From 
torsion measurements we determined in the transverse 
plane a critical field Hcc^.900 Oe and a sixfold anisotropy 
HA,z = 1.1 Oe and along the c axis the axial anisotropy 
# A ' 1 = = _ 7 5 0 0 O e . 

Assuming a magnetic spin model with the sublattice 
magnetizations lying in the transverse plane, low- and 
high-field expressions for the torque were determined 
and were found to be consistent with experimental 
observations. The (12.0) directions were established to 
be the preferred axes. A calculation of the ligand field 
anisotropy arising from the displacement of the nearest 
neighbor fluorines and a calculation of the classical 
dipolar interactions show a combined axial anisotropy 
of —7965 Oe. The sixfold anisotropy K% arising from 
second order dipolar interactions was estimated to be 
~ 2 Oe. The two calculated anisotropy fields are in 
reasonable agreement with the torque and resonance 
measurements. 

The temperature dependence of K% was observed 
from 4.2° to the transition temperature and the regions 
where spin-wave theory and molecular field theory 
appear to be valid are shown in Fig. 10. We have 
found that Ki/M2 decreases much more rapidly with 
increasing temperature than expected from spin-wave 
theory and also that it is constant over a high-tempera­
ture region in agreement with molecular field theory. 

Paramagnetic resonance measurements show a de­
creasing absorption and increasing linewidth as the 
temperature is lowered from 298 to 63°K. This effect 
was also observed in other noncubic antiferromagnets. 
An isotropic g value of 1.9989±0.003 was determined 
in this region. Magnetic resonance measurements at 
4.2°K show a sixfold anisotropy consistent with the 
torsion measurements. A half-width at half-amplitude 
of 12 ± 3 Oe is observed which is about as narrow a 

resonance line as has been observed for an antiferro-
magnet. Due to the presence of the easy plane, we 
observed the resonance out of the plane to be due only 
to the component of the static field in the plane. From 
4.2 to 0.3 °K a large temperature-dependent shift in 
the low-frequency antiferromagnetic mode exists as 
expected. This shift is due to the temperature de­
pendent hyperfine anisotropy field am determined to 
be equal to 9.15/T Oe. 

The two antiferromagnetic resonance frequencies 
were derived with Ho in the plane and the normal 
modes and rf susceptibility were discussed for the case 
where Ho is applied perpendicular to the preferred axis. 
The results are in agreement with observations. 

The strong coupling between the nuclei and electrons 
afforded an opportunity to observe the Mn55 nuclear 
resonance indirectly by monitoring the position of the 
electron resonance field. There exist two regions in 
which we could shift the electron-resonance line. In 
the first region a saturation of the nuclear magneti­
zation occurs at 668 Mc/sec which is ( 3 ± 1 ) % lower 
than the calculated average hyperfine field of 689±7 
Mc/sec. This suggests the presence of zero-point 
reduction in electron spin expected from spin-wave 
theory. Expressions for the frequencies of the two 
nuclear modes were derived and it was shown that the 
low-frequency mode is dominant as expected. The 
observed reduction in the nuclear resonance frequency 
with decreasing temperature is in excellent agreement 
with theory. 
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